# import libraries
import pandas as pd
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
import matplotlib.pyplot as pltPython Code
# read data
data_raw = pd.read_csv("../posts/2024-10-02-ts-fundamentals-whats-a-time-series/example_ts_data.csv")
data_raw = (
# select columns
data_raw[["Country", "Product", "Date", "Revenue"]]
# change data types
.assign(
Date = pd.to_datetime(data_raw["Date"]),
Revenue = pd.to_numeric(data_raw["Revenue"])
)
)
# print the first few rows
print(data_raw.head())# filter on specific series
us_ic_raw = data_raw[(data_raw["Country"] == "United States") & (data_raw["Product"] == "Ice Cream")]
us_ic_raw.set_index("Date", inplace=True)
print(us_ic_raw.head())# plot the series
plt.figure(figsize=(10, 6))
plt.plot(us_ic_raw.index, us_ic_raw["Revenue"], label = "Ice Cream Revenue", color = "blue")
plt.title("US Ice Cream Revenue")
plt.xlabel("Date")
plt.ylabel("Revenue")
plt.grid(True)
# save the plot
# plt.savefig("chart1", dpi = 300, bbox_inches = "tight")# plot the autocorrelation
plt.figure(figsize=(10, 6))
plot_acf(us_ic_raw["Revenue"], lags=24, alpha=0.05)
plt.title("Autocorrelation of US Ice Cream Revenue")
# save the plot
# plt.savefig("chart2", dpi = 300, bbox_inches = "tight")# plot the partial autocorrelation
plt.figure(figsize=(10, 6))
plot_pacf(us_ic_raw["Revenue"], lags=24, alpha=0.05)
plt.title("Partial Autocorrelation of US Ice Cream Revenue")
# save the plot
# plt.savefig("chart3", dpi = 300, bbox_inches = "tight")